Diagrams and rectangular extensions of planar semimodular lattices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frankl’s Conjecture for Large Semimodular and Planar Semimodular Lattices

A lattice L is said to satisfy (the lattice theoretic version of) Frankl’s conjecture if there is a join-irreducible element f ∈ L such that at most half of the elements x of L satisfy f ≤ x. Frankl’s conjecture, also called as union-closed sets conjecture, is well-known in combinatorics, and it is equivalent to the statement that every finite lattice satisfies Frankl’s conjecture. Let m denote...

متن کامل

Notes on Planar Semimodular Lattices. VII. Resections of Planar Semimodular Lattices

A recent result of G. Czédli and E. T. Schmidt gives a construction of slim (planar) semimodular lattices from planar distributive lattices by adding elements, adding “forks”. We give a construction that accomplishes the same by deleting elements, by “resections”.

متن کامل

Notes on Planar Semimodular Lattices. Ii. Congruences

We show that in a finite semimodular lattice, the ordering of joinirreducible congruences is done in a special type of sublattice, we call a tight S7.

متن کامل

Congruence-preserving Extensions of Finite Lattices to Semimodular Lattices

We prove that every finite lattice has a congruence-preserving extension to a finite semimodular lattice.

متن کامل

An extension theorem for planar semimodular lattices

We prove that every finite distributive lattice D can be represented as the congruence lattice of a rectangular lattice K in which all congruences are principal. We verify this result in a stronger form as an extension theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebra universalis

سال: 2017

ISSN: 0002-5240,1420-8911

DOI: 10.1007/s00012-017-0437-0